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Cellular automata are discrete mathematical systems that generate diverse, often 
complicated, behavior using simple deterministic rules. Analysis of the local 
structure of these rules makes possible a description of the global properties of 
the associated automata. A class of cellular automata that generate infinitely 
many aperiodic temporal sequences is defined, as is the set of rules for which 
inverses exist. Necessary and sufficient conditions are derived characterizing the 
classes of "nearest-neighbor" rules for which arbitrary finite initial conditions (i) 
evolve to a homogeneous state; (ii) generate at least one constant temporal 
sequence. 

KEY WORDS: Cellular automata; discrete dynamical systems; local interac- 
tions; deterministic structures. 

1. I N T R O D U C T I O N  

Cellular automata are a class of simple mathematical systems that generate 
diverse, often complicated, behavior. First introduced by von Neumann 
and Ulam (13~ as potential tools for studying biological self-reproduction, 
cellular automata have been reintroduced and used as mathematical 
models in a wide variety of contexts. (3~ Typically, a cellular automaton con- 
sists of a lattice of sites whose values evolve deterministically according to 
local interaction rules. The site values are restricted to a finite set of 
integers, and the rules specify the value of a site as a function of the values 
of neighboring sites at the previous time step. Specifically, consider the 
class of automata defined on a one-dimensional (possibly infinite) set of 
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sites xj, each of which assumes any of the values V = {0,..., k - 1 ). Then the 
general form for a rule defining a particular automaton is given by 

x~+l=f (x~  .. . . . .  ,x~,...,x~+r) f :  V2~+1~ V (1.1) 

where r >/0 is a constant specifying the size of the neighborhood for each 
site, and each site xi is assigned an initial value x ~ 

Cellular automata thus represent a rather general class of discrete 
dynamical systems. Certain of these automata are clearly equivalent to 
other standard mathematical constructs, including shift-commuting maps 
and finite-difference schemes for solving partial differential equations. 
Other cellular automata, however, such as 

x~ + 1 = x~_ 1 XOR max(x~, x~ + 1) 

where XOR denotes addition modulo two, cannot easily be identified as 
discretizations of continuous systems, and may be regarded instead as 
systems that generate novel and potentially interesting mathematical 
behavior. 

As a class of dynamical systems, cellular automata in fact exhibit a 
remarkable diversity of behavior. Even for fixed k (set of site values) and 
fixed r (size of neighborhood), the spatial and temporal sequences 
generated vary in nature from regular to seemingly random. In Refs. 15-19, 
Wolfram has provided an extensive catalog of the behavior associated with 
different choices of the rule combined with different initial conditions. In 
particular, on the basis of systematic computer simulation of a large num- 
ber of automata, he conjectures that all automata belong to at least one of 
four classes, qualitatively characterized as follows: 

"Class 1 evolution leads to a homogeneous state in which, for example, 
all sites have values 0; 

Class 2 evolution leads to a set of stable or periodic structures that are 
separated and simple; 

Class 3 evolution leads to a chaotic pattern; 

Class 4 evolution leads to complex structures, often longqived." 

The above description of the classification scheme appears in Refs. 16 and 
17. Figure 1 displays examples of the four classes. Although statistical 
quantities (such as dimension and entropy) have been used (11"15) to dis- 
tinguish among the four classes, the classification scheme is essentially 
phenomenological in nature. 

The diversity of behavior described above has motivated many 
attempts to model "complex" phenomena using cellular automata. In par- 
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au tomata  behavior described by Wolfram's 
classification scheme, c~5 19) Automata  depicted are defined using rules with k (number  of 
possible site values) = 3 and r (size of neighborhood) = 1. White squares represent value 0, 
grey squares value l, and black squares value 2. The top row of each au tomaton  provides the 
initial condition, and each subsequent row represents the state of the au tomaton  at the next 
time step. Automata  (a) and (b) are classified by Wolfram as Class 1; (c) and (d) as Class 2; 
(e) and (f) as Class 3; and (g) and (h) as Class 4. 
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ticular, cellular automata are viewed as prototypical mathematical models 
for systems consisting of a large number of simple, identical, and locally 
connected components. Examples of such systems include turbulent flow 
resulting from collisions of fluid molecules, (3) dendritic growth of crystals 
resulting from aggregation of atoms, (1~ and patterns of electrical activity in 
simple neural networks resulting from neuronal stimulation. (1) Such 
problems are conventionally studied using continuous models based on 
partial differential equations. Cellular automata complement the con- 
tinuous approach by providing alternative simulation tools characterized 
by discreteness, local interaction, simple construction, diverse range of 
behavior, and an inherently parallel form of evolution. 

Despite the long-standing and brood-based interest in cellular 
automata, relatively few rigorous results describing automata behavior 
have been obtained. The properties of "additive" cellular automata, i.e., 
automata whose site values depend on the sum of neighboring site values 
at the previous time step, have been studied by Martin et al. (8) and Lind. (7) 
The equivalence of shift-commuting continuous maps to a subclass of 
cellular automata has been established by Hedlund. (4) Milnor (9'1~ has con- 
sidered the surjectivity of automata rules. Applications of concepts from 
information theory to cellular automata have been discussed by 
Waterman. (a4) Other aspects of cellular automata are considered in Ref. 3. 
The general characterization of automata behavior remains for the most 
part, however, an open problem. 

In this paper, an approach will be presented to the mathematical 
characterization of "elementary" cellular automata; i.e., automata whose 
sites assume either of the values {0, 1 }, and whose rules depend only on 
nearest-neighbor interactions. In essence, the approach has two com- 
ponents, both of which are applicable to automata whose sites can assume 
more than two values, and whose rules involve more than nearest-neighbor 
interactions in one or more dimensions. The first focuses on the underlying 
structures of determinism implied, but often obscured, by the explicit for- 
mulation of the rule. Specifically, it is explicit in the form of a rule that the 
value x~ +1 is defined as a function of the values x~ 1, x~, x~+l; the 
approach of this paper is to study the classification of rules for which the 
definition implies, in addition, that the values x~ and xl +1, for example, 
determine X~+l. In other words, the explicit determinism of cellular 
automata, which can be viewed as operating along a time-increasing path, 
forces in many cases an implicit determinism along some other path as 
well. 

The second component of this paper's approach is the study of the 
tuples (w, x, y) and (x, y, z) into which a given pair (x, y ) s  {(0, 0), (0, 1), 
(1,0), (l, 1)} may "shift" by the appending of  a new component 
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w, z E {0, 1 } on the left or right. The set of possible 3-tuples is thereby 
classified into subsets, the elements of which share a particular (x, y). The 
deterministic structures discussed in the preceding paragraph will be shown 
to be direct consequences of the one-to-one, or many-to-one, nature of the 
rule restricted to these subsets. Furthermore, if (w, x, y) and (x, y, z) are 
"overlapping" tuples sharing a pair (x, y) and {wxyz} appears as a spatial 
string of values at time t, then the values assigned by the rule to (w, x, y) 
and (x, y, z) determine part of the string at the next step. Shift transfor- 
mations can thus be used to characterize the spatial and temporal sequen- 
ces generated by automata rules. 

The "deterministic structure" together with the "shift transformation" 
approach outlined above can be used to obtain rigorous results describing 
properties of cellular automata. In particular, the role of the one-to-one, 
versus many-to-one, nature of automata rules will be shown to be crucial 
in determining global behavior. Some of the results in this paper are 
motivated by Wolfram's phenomenological classification scheme, and serve 
both to support his conjectures and to clarify the dependence of automata 
behavior on the choice of initial conditions. For example, Section 5 
presents necessary and sufficient conditions defining the class of elementary 
rules for which arbitrary finite initial conditions evolve to a homogeneous 
state. Section 5 also contains necessary and sufficient conditions charac- 
terizing the class of elementary rules for which constant temporal sequences 
are generated from arbitrary finite initial conditions. In addition to the 
results mentioned above, the analysis also makes possible the description of 
global properties not explicitly suggested by Wolfram's classification 
scheme. In Section 3, for instance, a class of rules is defined for which 
arbitrary finite initial conditions produce infinitely many temporal sequen- 
ces that, although not necessarily "chaotic," are not periodic of any period. 
Section 4 provides conditions for the existence of "inverses" to elementary 
rules. 

As is indicated by the above outline, the emphasis of this paper is on 
understanding the underlying structure of elementary cellular automata 
rules, and on defining the classes of rules possessing certain global proper- 
ties. Taken as a whole, the results are suggestive both of the richness of 
cellular automata behavior, and of their intrinsic mathematical interest. 

2. D E T E R M I N I S T I C  S T R U C T U R E S  

"Elementary" cellular automata are defined (15']6) by rules of the form 

x~+~=f(x~ 1, x~,X~+l)f: {0, 1}3--, {0, 1} (2.1) 

822/43/1-2-15 
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i.e., the sites can assume either of the values {0, 1}, and only nearest- 
neighbor interactions are considered. Hence a rule is equivalently defined by 
specifying the value assigned to each of the 23 possible 3-tuple con- 
figurations of site values; i.e., by specifying the aj, j = 0,..., 7 such that 

000 001 010 011 100 101 110 111 

J, ~ ~ $ $ ~ $ ~ (2.2) 

ao al a2 a3 a4 as a6 a7 

Since each a s ~ {0, 1 }, there is a total of 223 = 256 possible rules. 
Wolfram (ls'16) has defined a labeling scheme according to which a rule 

is assigned a value 
7 

rule number = R = Y', aj. 2 j (2.3) 
j=o 

where aj is the value assigned to the 3-tuple corresponding to the number j 
in binary representation. For example, the rule defined by 

x~+lw~-(X~ 1+ X;+I) rood 2 

can be rewritten in the form of (2.2) as 

000 001 010 011 100 101 110 111 

0 1 1 0 1 0 0 1 

and then assigned a rule number 

R = 0 - 2 ~  1"21+ 1 ' 2 2 + 0 ' 2 3 +  1 . 2 4 + 0 " 2 s + 0 - 2 6 +  1"27= 150 

Thus the rule numbers range from 0 to 255, with each rule uniquely 
labeled. 

The explicit determinism of rules defined by (2.1) results from con- 
straints on the value x~ +1 assigned to the 3-tuple 

x~_,x~x;+, 
$ 

X~ +1 

(In the remainder of the paper, the above will be written as 
x~ l x ~ x ~ + l  ~ x~+l). It is possible, however, that a specific rule is defined 
in such a way as to imply an additional "deterministic structure." For 
example, it may be true that for all values of x~, x~+ I 

Ox~x~+ 1 ~ a and l x~x~+ 1 ~ Zt (2.4) 
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with a ~ci. If relation (2.4) holds, then specifying the values of x~, x~+ l, and 
x~ +1 suffices to determine x i_t i. Rules for which (2.4) holds can be said to 
exhibit the deterministic structure 

? I 

Table I 

Constraints on 
Deterministic structure coefficients Rule numbers 

t t t + l  (a) X~_l,  xe, x i  a j g : a j + l  85, 86, 89, 90, 101, 102, 105, 
~x~+~ j = 0 ,  2, 4, 6 106, 149, 150, 153, 154, 165, 

166, 169, 170 

~ t x~+l a j ~ a j +  4 15,30,45,60,75,90,105, (b) xl, xi+l, 
~x~ 1 j = 0 ,  1,2,3 120, 135, 150, 165, 180, 195, 

210, 225, 240 

(c) ~ x ,~ - l , x~  aj= aj+l 0,3,12,15,48,51,60,63, 
xi~+l j = 0 ,  2, 4, 6 192, 195, 204, 207, 240, 243, 

252, 255 

X t t (d) i, xi+~ a j = a j +  4 O, 17, 34, 51, 68, 85, 102, 
:=>xt+li j = O ,  1, 2, 3 119, 136, 153, 170, 187, 204, 

221, 238, 255 

t= :~  t + l  
(e) xi xi ao = a l  = a 4  = a 5  5 1 , 2 0 4  

a 2 = a 3  =c16 = a 7  

ao ~ a2 

(f) x i -  1 ~ x i  ao = al = a2 = a3 15, 240 
a 4 = a s = a 6 = a 7  

a o -fi a 4 

t / + 1  (g) xi+ i ~ x i  a0 = a2 = a4 = a 6 85, 170 
a l = a 3 = a s ~ a 7  

ao C a  

(h) ~ xl l,x~+~,x~ +t a j r  51,54,57,60,99,102,105 
~x~ j = 0 ,  1,4, 5 108, 147, 150, 153, 156, 195, 

198, 201, 204 
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Examples of other possible deterministic structures are represented 
below 

(a) 

(e) 

? 

(b) ? __1 

(f) (g) . ~  ( h ) ~  ~ 

(2.5) 
The expressions of the above structures in terms of constraints on {xl} are 
given in Table I. In each case, the problem is to find the class of rules for 
which the particular deterministic structure holds. The analysis will be 
given in detail for two cases, and can be extended in a straightforward 
manner for other structures. 

Notation. Let * be a "wild card" symbol 
{0, 1 }. The use of * in a relation signifies that 
�9 = 0 or * = 1. The use of two *'s signifies that 
possible combinations of 0 and 1. 

Consider case (a), which implies that x~+ 
and x~ + 1. Fix a choice of values for x~_ 1 and 
the configurations 

0 0 0 and 0 

an 

denoting both of the values 
the relation holds for both 
the relation holds for all 2 2 

1 is determined by x~_ 1' X~, 

x~, say, x~_ 1 = x~ = 0. Then 

0 1 

al  

must be mapped to different values a0 and al,  respectively, if it is to be true 
that deterministic structure (a) holds. Similarly, for 

0 1 0 and 0 1 1 

a2 a3 

1 0 0 and 1 0 1 

a4 a5 

1 1 0 and 1 1 1 

06 a7 
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{a2, a3}, {a4, a,}, and {a6, aT} must assume pairwise differing values. 
Consequently, the deterministic structure will hold for any rule with a s , 
j = 0,..., 7, such that 

ajCaj+ 1, j = 0 ,  2, 4, 6 (2.6) 

Note that if relation (2.6) holds, the rule will be one-to-one in each of the 
subsets 

{000, 001 }, {010, 011 }, {100, 101 }, {110, 111} (2.7) 

Now consider case (d). Then, by the same reasoning as in the previous 
case, the configurations *00, *01, "10, and *11 must be mapped to 
pairwise equal values, where * represents the "wild card" symbol. Hence, it 
must be true that 

@=@+4,  j = 0 ,  I, 2, 3 

In contrast to case (a), the rule will then be two-to-one in each of the sub- 
sets 

{000, 100}, {001, 101}, {010, 110}, {011,111} (2.8) 

The results of applying the above type of analysis to the remaining 
cases in (2.5) are summarized in Table I. 

As is suggested by Table I, the lists of rule numbers corresponding to a 
particular deterministic structure obey periodic, or periodic-like, laws. The 
particular values of the periods are artifacts of the labeling system (2.3); the 
basic fact of periodicity is in itself, however, a reflection of the underlying 
structure. To understand the periodicity mechanism, consider, for example, 
class (h), defined by 

ajCaj+2,  j = 0 ,  1, 4, 5 

Then any rule belonging to this class has a rule number computed from 
(2.3) as 

R = a o . 2 ~  21 + ~o. 22 + ~ 1 . 2 3 + a 4 . 2 4 + a s . 2 5 + g t 4 . 2 6 + ~ t s . 2 7  

where ~ denotes "not a." There is a total of 2 4= 16 such rules. When do, 
al, a4, a 5 assume all possible values, there will appear multiple "periodic" 
structures in the sequence of rule numbers Ri, i = 1,..., t6, sorted in increas- 
ing order. R1 through R e will be the rules assigning the smallest possible 
value to 527=4 aj-U.  The differences R i - R i  1, i =  2, 3, 4, will be the dif- 
ferences in a sorted sequence of positive integers ~< 12 with two l's in their 
binary representation; i.e., R e - R ; _ I =  3. Rs through R8 will be the rules 
assigning the next smallest value to 527= 4 as" U. Their differences Ri - Ri _ 1, 
i = 6 ,  7, 8 will again be 3, and R s - R 4  will be equal to ( R e - R 1 ) ' 2 4 -  
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( m a x i m u m  possible Rj  - Ri; i, j < 4) = 3" 24 - (23 -+- 22 - (21 + 20)) = 39. A 
similar analysis provides  the sizes of the subsequent  gaps. Clearly, the same 
mechan i sm produces  the periodic, or periodic-like, s tructure of  the rule 
numbers  belonging to the other  classes. 

A useful tool  for unders tanding  the determinist ic structures of  this sec- 
t ion and the results of later  sections is the "directed shift" g raph  shown in 
Fig. 2. In  the graph,  an edge is d rawn f rom the 3-tuple w x y  to any  tuple 
xy*  into which w x y  can be shifted by the deletion of "w"  and the 
appending  of * =  {0, 1 on the right. Thus,  for example,  

001 ~ 0 1 0 ,  011 

110  ~ 100, 101 

In  addit ion,  for any  par t icular  rule, each node  is assigned the appropr ia te  
aj. Then  the condi t ions for cases ( a ) - (h )  can be re-expressed in terms of the 
graph. Fo r  example,  

case (c) aj = aj+ 1, j = O, 2, 4, 6 

)0 

01: l~t0 

Fig. 2. Directed-shift graph. All possible 3-tuples wxy, with w, x, y ~ {0, 1 }, are represented 
as nodes in the graph. An edge is drawn from wxy to any tuple xyz into which wxy can be 
shifted by the deletion of w and the appending of z E {0, 1 } on the right. 
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two tuples belonging to the same subset in (2.7) must be assigned 
equal values 

,,~ two nodes in Fig. 2 with the same source must have equal values. 

The directed shift graph will be useful in determining the sequences 
{x~}, {y~}, i =  1,..., n satisfying 

X 1 X 2 X  3 " " X n _ 2 X  n I X n  

Y2 Y3" " Yn-2 Yn 1 

3. P E R I O D I C I T Y  OF S E Q U E N C E S  

Each constraint described in Section 2 induces, in a particular class of 
cellular automata, a deterministic structure in addition to that explicit in 
the formulation of the rules. The next sections will discuss some 
implications of those structures. It will be shown that the additional struc- 
ture can be exploited in some cases to obtain results describing global 
properties of the associated class of automata. In this section, results of this 
typ6 pertaining to the periodicity of temporal sequences will be derived. 

In what follows, assume without loss of generality that 000 ~ a0 = 0. 
Additional constraints, such as 00t ~ a~ = ! (100 ~ a 4 = l ) ,  will sometimes 
be imposed to ensure left (right) propagation of nonzero values. 

Dofinition. An initial condition {x ~ - o e  < i <  or} such that for 
some - ov < M ~< N < oe, x ~ = 0 for i < M, i > N, and x ~ = X0N = 1, will be 
called an arbitrary finite initial condition. 

Definition. The sequence {x~, 0 ~< t < oo is periodic if 3Ti, Pi such 
that x~ + p~ = x~ for t ~> Ti. 

Then it is easy to show 

Theorem 1. Let {x~}, {xJ} be two periodic sequences with i< j .  
Then for i <  k < j ,  the sequence {x~} must be periodic. 

Proof. Consider the spatial string of values {x~,, i < k < j }  for any 
time t. The sites in the string can assume only the values {0, 1 }, and 
therefore the string must repeat itself after at most 2 j -  i - i  time steps. Since 
the temporal sequences {x~} and {xj} are periodic with periods Pi and pj, 
respectively, the entire "block" of sequences {x~, i<~k~.j} must be 
periodic with period p ~<lcm(pi, pj).  2 j-~ ~; i.e., there exists some T such 
that x~=xtk +p for t~> T and i<~k<<.j. 

Corollary 1. Let R be a rule that assigns 000 --* a0 = 0, 
001---~a I = 0 ,  and 1 0 0 ~ a 4 = 0 .  Then, with arbitrary finite initial con- 
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ditions, the entire automaton is temporally periodic, i.e., there exist T and 
p such that x~=x~ +p for t~> T a n d  all i. 

Proof. The specified values of ao and al ensure that the "left 
endpoint" value x ~ = 1 will not propagate to the left. Similarly, the "right 
endpoint" value X0N = 1 is prevented from propagating to the right. Hence 
the sequences {x~; t~> 0} are constant with all components equal to 0 for 
i~< M - 1  and i~>N+ 1. Theorem 1 then implies the periodicity of the 
entire automaton. 

The lemma and theorem that follow pertain to the temporal sequences 
generated by rules with a particular deterministic structure. Note that the 
deterministic structure considered implies that the rules are one-to-one in 
each of the subsets (2.7). The one-to-one nature of the rules will be used to 
establish that the temporal sequences are not periodic of any period. 

L e m m a  2. Let R be a rule belonging to class (a); i.e., satisfying 
as g:aj+ 1, j - -0 ,  2, 4, 6. Then given any two adjacent periodic sequences 
{x~}, {x~+l}, every sequence {x~+~} must be periodic with Ti+s= 
max(Ti, Ti+l) and Pi+j~< lcm(pi, Pi+l) for all j>~2. 

Proof. If R belongs to class (a), then x~+2 is determined by x~, x~+l, 
and xl++~. Hence, periodicity of {x~} and {x~+l} implies periodicity of 
{x~+2} with the stated properties. By induction, every sequence {x~+j} to 
the "right" must also be periodic for j >/2. 

The theorem then follows: 

Theorem 2a. Let R be a rule belonging to class (a) with 
100 - - *  a 4 = 1. Then, with arbitrary finite initial conditions, there can exist at 
most one periodic sequence {x~}. 

Proof. Suppose ~ two periodic sequences {x~}, {x~} with i<j.  By 
Theorem 1, the sequence {x~_l} will also be periodic. Lemma2 then 
implies that all sequences {x~+t}, / > 0 ,  to the "right" will also be periodic 
with the same T =  max(Tj_ 1, Tj) and p ~<lcm(pj 1, Pj). Finite initial con- 
ditions and a4 = 1 imply, however, that there will be some J such that 
x~+s = 0 for T~< t ~ T +  p, but x[~f  = 1 for some q >~ p. The contradiction 
implies that there cannot be two periodic sequences of any period. 

The same result for rules of class (b) can be stated as: 

Theorem 2b. Let R be a rule belonging to class (b) with 
001 ~ a I -- 1. Then, with arbitrary finite initial conditions, there can exist at 
most one periodic sequence. 

The above two theorems support a conjecture on the part of 
Wolfram (19) that the "center" time sequence {x~} generated by Rule 30 is 
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aperiodic. The rules for which the conditions of either Theorem 2a or b are 
satisfied are: 

30, 86, 90, 150, 154, 210 

Figure 3 depicts the evolution of a single nonzero site under Rule 30. 
Theorems 2a and b can be generalized to the case of nonelementary 

cellular automata for which the rules depend on nearest-neighbor interac- 
tions, but the sites can assume values V= {0,..., k -  1 } for arbitrary k ~> 2. 
Then the general form of a rule is given by 

x ~ + l = f ( x ~  1,x~,x~+l); f :  V3~ V (3.1) 

and there is a total o f k  ~3 rules. The conditions for a rule defined by (3.1) to 
possess deterministic structure (a) are given by 

al.ke+m.kX+n~al.kZ+m.kl+nj; l, m, ni, n je  V 

for all/, m, and ni v a nj. Similarly, the conditions for a rule to possess deter- 
ministic structure (b) are given by 

ali.k2+m-kl+n~alj.k:+m.kl+n; l,m, ni, rljE V 

for all m, n, and li va lj. Then the theorem analogous to Theorem 2 follows. 

Theorem 3. Let R be a rule defined by (3.1) and either belonging 
to class(a) with {0 ..... k - I } 0 0 - / * 0 ,  or belonging to class(b) with 

k=2,  r = l ,  e l e m e n t a r y  r u l e  30 (00011110) 

Fig. 3. Evolution of the cellular automaton defined by 

x~ + 1 = x~_ 1 XOR max(x~, x~+ 1) [Rule 30] 

with an initial condition consisting of a single nonzero site. Site values 0 and 1 are represented 
by white and black, respectively. 
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00{0,..., k - l } -1. 0. Then with arbitrary finite initial conditions, there can 
be at most one periodic sequence. 

Note that there will be k! k2 rules that exhibit deterministic structure 
(a), of which (k!)k(k- l ) (k-1)!  satisfy the requirements of right- 
propagating initial conditions and 000 ~ a0 = 0. The same result holds for 
rules belonging to class (b). 

Periodicity results for "diagonal" sequences may also be obtained. The 
next theorem establishes the periodicity of diagonal sequences for all 
elementary rules, and is accompanied by a corollary indicating the special 
periodicity properties for rules with a particular deterministic structure. 
The results are easily generalized to the nonelementary case. 

Definition. A sequence {x~+,, t=O,  1,2,...} will be called a right 
diagonal of x ~ 

Definition. A right diagonal {x~+,} of xi is periodic if 3Ji, p~ such 
that , _ t + p, for t >~ Ji. X i +  t - -  X i +  t +pi  

Analogous definitions can be made for left diagonal sequences. 

T h e o r e m  4. Let R be a rule defined by (2.1). Then the right and 
left diagonal sequences of the automaton generated by R are periodic. 

Proof (by induction). Assume that rule R assigns 000 -~ ao = 0. Con- 
sider the right diagonal sequence {x~+ ~, t >~ 0}, to be denoted as {d~}, and 

~  for i > N .  The sequences {d~v+l } and {d~v+2} are then recall that x~ 
automatically constant with all elements equal to 0 and J N + I  = JN+2 = 0 
since they lie "outside" the nonzero region of the automaton. By (2.1), 

d,v+ 1 d' , = f (  N '  d~v+l, djv+2) 
In particular 

and 

0 o d l =  f (  d~ d~ 1, dN§ 2)= f (dN,  O, O) 

= f (  N, O) d2N - d I , d 1 - f (  u,d~N+, d~v+2) 0, 

If d~ = d ~ then the sequence {d~v} is periodic with period 1 and JN = 0. If 
d~ # d ~ then either d2u = d~ or dE = a~ u. In the former case, the sequence 
{d~v} is periodic with period 1 and JN = 1 ;  in the latter, the sequence is 
periodic with period 2 and J u  = O. 

Assume now that for some k~> 1, the diagonal sequences {d~v-k+l} 
and {d~v_k+2} are periodic with periods PN k+l and PN--k+2, respec- 
tively, for t>>-Ju-k+l. Let p = l c m ( p u _ k + l ,  P u - - k + 2 ) .  Then for 
t>/JN_k+l,  

d t +  l _ f t , 4 t  t u - k - -  ~,--N--k, dN-k + l, d~_k + 2) 
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and 
_ r~d~+p dtN+Pff =Jl,"d *+pN_k, dtN+--Pk+l, d}+Pk+2)--at N--~, d'N--k+l, dN--k+2) 

Ifd~u-k =a'+p"N-k for t = J  N k+l, then the sequence {d~v k} is periodic with 
period PN-K[P and J N _ k = J N _ k + l  If "~t .~3,+p for t = J  N k but �9 ~ N - - k T - ~ N - - k  + 1 ,  

"r ~ for some j <  p, then the f(1,  ~u-k+l,'t'+J d t N + J k + 2 ) _  = / ( 0 ,  d~v+_Jk + 1, "N-k+2,  
sequence {d}_k} is periodic with period PN k[ P and J N _ k = J N _ k + l  +j .  

.4t + j  If f (1 ,  "u-k+l,'4t+J d~v+Jk+2) Cf (0 ,  "n-k+1,  d~v~k+2) for all j < p ,  then the 
sequence { d}v_ k } is periodic with period PN- k = 2p and JN-  k + 1' Hence, 
all right diagonal sequences must be periodic. The proofs for left diagonal 
sequences, and for rules which assign 000 --. ao = 1 are similar. 

Corollary 4. Let R be a rule belonging to class (b) with 
1 0 0 ~ a 4 = l .  Then with arbitrary finite initial conditions, the right 
diagonal sequences {X~v_n+~, t>~0} will be periodic for all n~>0 with 
JN-n = n and periods which are powers of 2. 

A symmetric corollary can be given regarding the periodicity of left 
diagonal sequences generated by rules belonging to class (a). 

4. I N V E R S E S  FOR RULES 

A second type of result that can be obtained from the analysis of 
deterministic structures together with the "shift transformations" described 
in Section 2 pertains to the existence of "inverses" for elementary cellular 
automata rules. Let R{x~} denote the sequence that results from applying 
rule R to {x~, - oe < i < oe }. Then define the composition R' o R of rules R 
and R' as R'{R{x~} }. 

DoHnition. Rule  R 1 is the inverse of R iff R- I { R{ x~} }  = {x~}. 

T h e o r e m  5a. Let R be a rule belonging to class (e), (f), or (g). 
Then R has an inverse R 1, and R{000} = R  1{000}. 

Proof. Recall that "*" was defined in Section 2 to be a "wild card" 
symbol denoting both 0 and 1. For a rule belonging to class (e), *0*-+ a 
and * 1 " ~ 8 ,  with a ~ .  Suppose *0*=0.  Then R' with * 1 " ~ 1  and 
*0* ~ 0 is the inverse of R. Hence the rule is its own inverse. For a rule 
belonging to class (f), * * 0 ~ a  and **1 ~ 6 ,  with a ~ d .  Suppose **0=0.  
Then R' with 1"*--, 1 and 0 " * ~ 0  is the inverse of R. Rule R = R  -~ 
therefore belongs to class (g). The proof for the cases in which *0* ~ 1, 
**0 --, 1, or 0"* ~ 1 is similar. 

The conditions in Theorem 5a can be shown to be necessary for a rule 
to possess an inverse. A lemma describing the constraints on rules with 
inverses follows. 
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L e m m a  5. Define {bicidi: R'{bicidi} =0}.  Suppose that for rule R, 
there exist x ,y  such that x l y  --* ci for some i. Then the rule R has an inverse 
R -x = R' =~ either there exists no g such that gxl  ~ b~, or there exists no h 
such that l yh ~ d~. 

Proof. Suppose 3g, h such that g x l ~ b ~  and l y h ~ d ~ .  Then 
R ' { R ( g x l y h }  } = R'{bic~di} = 0, and therefore the rule is not invertible. 

T h e o r e m  5b. The only rules R with inverses R -1 are those 
satisfying the conditions of Theorem 5a. 

Proof. Assume that rule R has an inverse R -~, and R{000}=0 .  
Then there are only two possibilities for R: (a) *0"--*0, and (b) 
* 0 " ~  {0, 1}. For  (a), neither **0 nor 0"* can be assigned the value 0. 
since either case implies R-I{R{*010*}}  = R-~{000}, a violation of the 
lemma. Hence, **0 and 0"* must be able to assume either value 0 or 1, 
and therefore the only rule with an inverse in this case is *0" ~ 0, *1" ~ 1. 
For  case (b), * 0 " ~  {0, 1}. Then if both * * 0 ~  {0, 1} and * * 0 ~  {0, 1}, no 
inverse exists. Hence either **0---, 0, **1 ~ 1, or 0"* ~ 1, 1"* --* 1. 

5. H O M O G E N E O U S  STATES AND CONSTANT TEMPORAL 
SEQUENCES 

The constraints discussed in Section 2 were global in the sense that a 
given relation, say, Oxy ~ a and lxy  ~ ~ (a # ~) was to be satisfied by all 
values of x and y. In this section, the implications of less restrictive con- 
straints will be discussed. In particular, the imposition of constraints 
satisfied for only specific choices of x and y, together with the analysis of 
tuples into which a given tuple may be "shifted," will be shown to define 
the classes of rules whose initial conditions either evolve to homogeneous 
state, or generate constant temporal sequences. As will become apparent, 
the constraints can be interpreted as requiring that the rules be two-to-one 
in at least some of the subsets (2.7) or (2.8). 

Definition. An automaton is said to evolve to a homogeneous state if 
there exists T <  oo such that x~ = c, c constant, for all t ~> T and all i. (The 
constant c does not depend on either t or i.) 

T h e o r e m  6. A rule R evolves from all arbitrary finite initial con- 
ditions to a homogeneous state with x~=0  for all i and t <  oo iff 
ao = al = a2 = a 4  = 0 and one of the following two conditions holds: 

(i) a3=O 

(ii) a 6 = 0 
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Proof. First show that the conditions are necessary. As before, a0 is 
assumed to be 0. (A symmetric theorem holds for the case a o =  l.) To 
prevent infinite propagat ion of the endpoint values xM~ _--XNO _--1, it is 
necessary that 001 ~ al = 0 and 100 ~ a 4 = 0. If 010 --* a2 = 1, then a tuple 
00100 appearing anywhere in the initial condition (for instance, at the 
"end" of the sequence) will be invariant under R. Hence ao=a~ = 
a 2 = a 4 = 0 .  Next suppose 0 1 1 ~ a 3 = l  and l 1 0 - * a 6 = l .  Then a tuple 
001100 appearing anywhere in the initial sequence will be invariant. 
Therefore either a3 = 0 or a 6 = 0 must be true to permit evolution to a con- 
stant state of 0. 

Now show sufficiency. The proof  proceeds by showing that at any time 
t, the last nonzero value x~ to the "right" or "left" must go to 0. First sup- 

= t - 0  for i < M ,  x ~ t = l .  pose ao al = a z = a  3 = a 4 = 0  , and at time t, x i -  
Regardless of the value of xM+ ~ , t  it must be true that x ~  ~-- 0. Since 
100 ~ a4 = 0 prevents propagat ion on the right, the entire set of sites will 
evolve to 0 in a finite number  of steps. The argument for the case 
ao = a~ = a2 = a4 = a6 = 0 is  the same. 

Remark. It has been assumed throughout that 000-~ ao = 0. If this 
assumption is removed, then the conditions for evolution to a constant 
state with all site values equal to 1 are symmetric to those stated in 
Theorem 6. 

The total number  of rules for which arbitrary finite initial conditions 
evolve to a homogeneous zero state is therefore 23 + 23 - 22 = 12. The rule 
numbers for which this behavior occurs are 

0, 8, 32, 40, 64, 96, 128, 136, 160, 168, 192, 224 

Note that the rules satisfy relaxed forms of the constraints for classes (c) 
and (d); namely, {00", *00} ~ 0 and either 01" ~ 0 or *10 ~ 0, where "*" 
was defined in Section 2. Hence the rules are two-to-one in at least two of 
the subsets of (2.7) or (2.8). 

Next consider the class of rules for which evolution from any finite 
initial condition generates at least one constant temporal  sequence {x~}. As 
in the case of evolution to a constant state, the rules exhibiting this 
behavior will again be two-to-one in some subsets of (2.7) or (2.8). 

Definition. A sequence {x~, t~>0} is constant if 3 T <  ov such that 
x~ = C, C constant for all t >~ T. 

Definition. Denote the initial condition by {x ~ - ve < i < oo } where 
for some M and N, x ~  for i < M ,  i > N ,  and x ~ 1 7 6  1. Then the 
length of the initial condition is defined to be N -  M + 1. 
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Definition. A string Cx~, - o o  < i <  oo} is symmetric at time t if 
x~_j=x~+j for all j~>0 and some x~. 

It is easy to show 

L e m m a  7.1. Let Yl,-.., Y, denote elements of C0, 1 }. Then a rule R 
will generate constant temporal sequences if *yl Y2 ~ Yl, Yl Yz Y3 --+ Y2,..., 
Y,-2 Y,-1 Yn--* Y,-1,  Y,-  1Yn* --* Y,, and there exist t and i such that 
X~+j X yj  for j = 1,..., n. 

Note a rule satisfying the condition of Lemma 7.1 will again satisfy 
relaxed forms of the constraints defining classes (c) and (d), and thus will 
be "two-to-one" in at least one subset of both (2.7) and (2.8). 

The theorems that follow provide necessary and sufficient conditions 
for the generation of constant nonzero temporal sequences; i.e., sequences 
with x~ = 1 for t ~> T, T finite. Symmetric results hold for the case of con- 
stant zero temporal sequences. As a preliminary but fundamental result, the 
next lemma provides a condition for the generation of at least two adjacent 
constant temporal sequences by a rule exhibiting both left and right 
propagation. 

L e m m a  7.2. Suppose al = a 4 =  1 and there exist sequences {xf}, 
{x~+l} and some T such that for t>~ T, x l = x  i and x ~ + l = x i + l ,  where 
x;, xi+l are constants. Then there must exist Yl, Yz, Y3, Y4 E C 0, 1} for 
which *Yl Y2 --~ Yl and Y3 Y4* ~ Y4" 

Proof. Suppose there are no values Yl, Y2 for which *YlY2--* Yl. 
Then, in order for {x~} and Cx~+l} to maintain constant values, the 
sequence Cxf_ ~ } must be constant for t >/T. By induction, this establishes 
that all sequences {x~ j}, j~>0, must also be constant for t~>T. Finite 
initial conditions imply, however, that not all sequences to the "left" are 
constant, and hence there must exist y~, Y2 such that *ylyz---~yl. 
Similarly, there must exist Y3, Ya such that Y3 Y,*-* Y4. 

T h e o r e m  7a. A rule R with ao = 0, al = a4 ~-1 will generate from 
arbitrary finite initial conditions at least one constant nonzero temporal 
sequence iff one of the following conditions holds 

(i) { '11 ,11"}-- ,1  (a3=a6=a7=l) ,  and (11) either appears in the 
initial condition, or is generated under R; 

(ii) {*10,01"}-*1,  101--*0 (a2=a3=a6=l,  as=0) ,  and (101) either 
appears in the initial condition, or is generated under R; 

(iii) C010 ,111}~l ,  C011,110,101}--.0 ( a 2 = a 7 = l ,  a3=as=a6=O), 
and the initial condition is symmetric with respect to some x~ 

(iv) {010,101,111} ~ 1 ,  C011,110}--*O (a2=as=a7=l ,  a3=a6=O) ,  
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and the initial condition is of odd length and generates, for some 
t ~> 0, a sequence symmetric with respect to some x~. 

Proof. Sufficiently of conditions (i) and (ii) follows from Lemma 7.1. 
Sufficiency of (iii) and (iv) is easy to show. 

To show that the conditions are necessary, assume the existence of at 
least one constant nonzero sequence. Consider, for some time T, the 
"widest" blocks {x~" .  xt~} such that x~=x i  is constant (possibly equal to 
0) for t/> T. For any T, multiple such blocks may exist, and each block 
must be finite in width since the initial conditions propagate in both direc- 
tions. 

Suppose there is a block of width n 1> 2. Then Lemma 7.2 implies that 
there exist Yl, Y2, Y3, Y4 satisfying *Yl .,1)2 ~ Yl, Y3 Y4* --~ Y4. Since 
001 ~ al = 1 and 100 ~ a4 = 1, the only possible values are given by 

(1) y~y2 = 10, y3y4 =01 

(2) yl y2 = 10, y 3 y 4 =  11 

(3) y l y 2 =  11, y 3 y 4 =  11 

Subcase (1) implies * 1 0 ~  1, 01" ~ 1, and 101 ~ 1, Subcase (2) implies 
* 1 0 ~  1, 11" ~ 1, and 011 ~ 1, and hence *11 ~ 1. Subcase (3) implies 
{ * 11, 11 * } -~ 1. Thus the conditions of the theorem have been shown to be 
necessary for blocks of width n ~> 2. 

Now suppose there exists a nontrivial block of width n = 1; i.e., there 
exists a constant nonzero sequence {x~} neither of whose neighboring 
sequences is constant. Define the set 

E =  { (xyz): x =  x~ 1, y =  x~', z =  x~+ ~ for some t'>~ T} 

representing the set of "embeddings" of the sequence {x~} which can occur 
under the rule. Then the possibilities for the set E can be summarized as 
follows 

(a) E =  {(010), (111)} 

(b) E =  {(011), (110)} 

(c) E =  {(010), (011), (110)} or {(011), (110), (111)) or {(010), (110), 
(111)) 

(d) E =  { (*1" ) )=  {(010), (011), (110), (111)) 

Note that any other set, e.g., E =  {(011)), would imply that one of the 
adjacent sequences is constant. 

First consider case (a). It can be assumed that x~_lx~x~+ 1 = 111 and 
x t + l ~ z + l , ' t + l = 0 1 0  for some t>~T. Then l l l - * a T = l  and 0 1 0 ~ a 2 = l .  i - - l ~ i  ~ i + 1  

There must exist some y ~ { 0 , 1 )  for which x~x~+ly=l l y - - ,O ,  and 
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therefore 110--. a = 1. Similarly, 011 ~ a3 = 0. The only remaining undeter- 
mined aj is a s. Suppose 101 ~ a5 = 0. Then the rule satisfies the conditions 
defining deterministic structures (a) and (b) from Section 2, and hence the 
symmetry of {x~_l} and {xl+l} implies the symmetry of the entire 
automaton with respect to {x~}. It can be seen (by considering, for 
instance, the directed-shift graph of Fig. 2) that symmetry of the automaton 
generated with the specified values aj requires symmetry of the initial con- 
dition, and thus the necessity of condition (iii) is established. 

Now suppose for case (a) that 101 ~ a5 = 1. Recall that the initial con- 
dition is denoted by {x ~ where x~=0  for i > N ,  i < M ,  and x ~  ~  1. 
Assume, without loss of generality, that x ~ +1 = 1. It can easily be verified 
that 

t t ~'010 for odd t ~> 0 
X M  1--tXM--tXM+I--t=--[011 for even t >~0 

Thus, it must be true that the diagonal elements x~t_l ~ = 0, XM_ t '  = 1, 
and the diagonal sequence {X~+l_t}  is periodic with period 2 for t>~0. 
Since both 1 0 0 - * a 4 =  1 and 1 0 1 ~ a 5 =  1, it follows that the diagonal 
elements XM+2_ ~ t  _-- 1 for t >~ 2. It is then straightforward to show (the proof 
proceeds along the lines of that for Theorem 4) that there exist values 
TM+k < Oe such that the diagonal sequences {x~t+k_t} are periodic with 
period 2 e, p >~ 0, for odd k >~ 3, and constant with all elements equal to 1 
for even k>~4 and t>/TM+k. The same result holds for the diagonal 
sequences {x~v k+,}. 

To show the necessity of condition (iv) for the above rule, assume the 
existence of a constant nonzero temporal sequence. It follows from the 
value specified for aj that the rule violates the conditions defining deter- 
ministic structures (a) and (b) in that {*01, 10"} --* 1, but satisfies them 
otherwise. The proof proceeds by showing that the partial determinism suf- 
fices to induce symmetry in a region of the automaton "local" to the con- 
stant sequence. It can be assumed that xiS lXiXi+ i s  ~ = 111 and 
xS+l,.s+l.~,+l =010 for some s>~O. Since 011--+ al = 1, 100--+ a4= 1, and 

i - -  1 ~ i  ~ i +  1 

101 ~ as = 1, there is no y e {0, 1 } for which either 10y ~ 0 or y01 --* 0, 
t - ~ for and therefore ,~s+2,.s+2,.,+2 = 111. It is easily verified that xi_ 2 - x i +  2 ~ i  1 ~ i  ~ i +  1 

t >is. Consider now the temporal "cone" of the automaton bordered by 
{x~+j, - 2 ~ < j 4 2 } ,  and the diagonal sequences {x~_+~_,, t~>O} and 

s §  {xi+2+,, t>~O}. It can be shown that no two adjacent O's can occur in the 
temporal sequences within the defined region; i.e., x~ = 0 => x~- 1 = x~+ 1 : 1,  

i f x ' - I  x '  a n d x ~  +' k , ~, are contained in the cone. It follows that the rule is 
deterministic in the cone, and moreover the cone must be symmetric with 
respect to {x~} for t ~> s. Periodicity of the diagonal sequences then implies 
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that for some S > s, all diagonal sequences to the "left" and "right" of the 
cone must be alternatingly periodic of period 2 p, p ~> 0, and constant with 
all elements equal to 1 for t >~ S. As a result, the partial determinism of the 
rule implies symmetry of the entire au tomaton  for t ~> S. Thus condition 
(iv) has been shown to be necessary. 

Next consider case (b). As in case (a), it can be deduced that 
0 1 1 ~ a 3 = 0 ,  1 1 0 ~ a 6 = 0  , and l l l - - * a 7 = 0 .  If both 0 1 0 ~ a 3 = 0  and 
101 ~ a5 =0 ,  then the rule satisfies the conditions defining deterministic 
structures (a) and (b). It follows from the values specified for ~ ,  
j =  0, 1 ..... 7, that if {x~_ 1} and {x~+x } are "asymmetric" (i.e., x~_ 1 r x~+ 1 
for all t~> T), then {x~_2} and {x~+2} are also asymmetric, but {x~_3} and 
{x~+3} must be symmetric with respect to {x~} for t~> T. By induction, it is 
estabfished that {x~_ 3j- 1 } and {x~+ 3j+ 1 } must be asymmetric for all j >/0. 
The finiteness of initial conditions then produces a contradiction. It can be 
shown that a contradiction also results from choosing either 010 ~ a 3 ---0, 
101 ~ a5 = 1; or 010 ~ a 3 = 1 ,  101 ~ a5 = 1. The case in which 010 ~ a 3 = 1 ,  

101 ---, a5 = 0 is covered by condition (ii). 
Finally, it is straightforward to verify that choosing E to be a set 

included in case (c) or (d) leads either to a contradiction, or to one of the 
conditions shown to be necessary for the existence of a block of width 
n~>2. 

Corollary 7.1. Suppose rule R satisfies condition (i) of 
Theorem 7a. Then the initial conditions that generate at least one constant 
nonzero temporal sequence include 

(a) any string in which either (11) or ( l x l " " x n l )  appears, where x~=  
- "  = x n = 0  and n is even; 

(b) all possible strings, if 0 i0  ~ a2 = 1. 

Corollary 7.2. Suppose rule R satisfies condition (ii) of 
Theorem 7a. Then the initial conditions that generate at least one constant 
nonzero temporal sequence include 

(a) any string in which ( l x  1 " ' "  X n 1) appears, where x~ . . . . .  xn = 0 and 
n is odd; 

(b) any string in which (0x~' . -  x ,0 )  appears, where xl . . . .  = x ,  = 1 and 
n/> 3 is odd, if 111 --* a 7 = 0. 

R e m a r k .  A test can be used to check whether a given initial con- 
dition will generate a symmetric string for some t < o% and thus satisfy 
condition (iv) of the theorem. Recall that the diagonal sequences {x~,+k_,,  
t ~> 0 } and {X~v_ k +t, t >/0 } generated from rule R with a 0 = a 3 = a 6 = 0 and 
al = a2 = a4 ----- a5 = a7 = 1 possess certain periodicity properties. Specifically, 

822/43/1-2-16 
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it can be shown that the diagonal sequence {x~+ k t} will be constant 
with all elements equal to 1 for even k~>0, and {x~+k+~_t} will be 

L periodic of period ~< 2 L+I for t ~-Zt= ~ 2z, where L = k/2. The same results 
hold for the diagonal sequences {x~v k+~}. For  the automaton to be sym- 
metric for some t>>.S, it must be true that the diagonal elements 

t xM + k- ~ = x~v_ k +, for t/> S and all k/> 0. Hence, an initial condition will 
generate a symmetric string iff 

L 

t - ' for t~> ~ 2' (5.1) XM+k t--XN--k+t 
/ = 1  

with L=[k/2]=greatest  integer~<k/2, k>~0, and x ~  ~ 1. If 
condition (5.1) is violated for any k/>0, the automaton will not become 
symmetric for any t. 

Theorems for the case where either 001 ---, a~ P 0 or 100 ~ a4 ~ 0 can 
be stated as follows. Corollaries analogous to those for Theorem 7a are 
easily obtained. 

T h e o r e m  7b. A rule R with ao = al = 0, a 4 = 1 will generate from 
arbitrary finite initial conditions at least one constant nonzero temporal 
sequence iff one of the following conditions holds: 

(i) {*11,11"}--+1 (a3=a6=a7=l) ,  and (11) either appears in the 
initial condition, or is generated under R; 

(ii) 01"--,  1 ( a z = a 3 =  1) 

ProoL The proof proceeds along much the same lines as for 
Theorem 7a. The stable sequences for this case may be bounded on the left 
by an infinite number of 0 sequences, giving rise to condition (ii). The suf- 
ficiency of condition (ii) is proved by considering the "left-most" value 
XM = 1 in the initial condition. 

The next two theorems are stated without proof. 

T h e o r e m  7c. A rule R with ao = 0, a~ = 1, a 4 = 0 will generate from 
arbitrary finite initial conditions at least one constant nonzero temporal 
sequence iff one of the following conditions holds 

(i) {*11,11"} ~ 1  (a3=a6=a7=l) ,  and (11) either appears in the 
initial condition, or is generated under R; 

(ii) * 1 0 ~ 1  ( a z = a 6 = l )  

T h e o r e m  7d.  A rule R with ao=a~ = a  4 = 0  will generate from 
arbitrary finite initial conditions at least one constant nonzero temporal 
sequence iff one of the following conditions holds 
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(i) { * 1 1 , 1 1 " } ~ 1  (a3=a6=a7=l), and (11) either appears in the 
initial condition, or is generated under R; 

(ii) 010--. 1 (a2 = 1), and (00100) either appears in the initial condition 
or is generated under R; 

(iii) {011, 1 1 0 }  ~ 1 ( a  3 = a 6 = 1) ,  and (001100) either appears in the 
initial condition, or is generated under R. 

6. S U M M A R Y  

Elementary cellular automata are defined as automata whose sites can 
assume either of the values {0, 1}, and whose rules depend on nearest- 
neighbor interactions. Such automata are inherently deterministic in that 
the value of a site at any time is determined by the values of its neighboring 
sites at the previous time step; i.e., x~ +I is determined by x~_ 1, x~, and 
x~+ 1. It has been shown that certain classes of elementary rules exhibit an 
additional determinism which results from the specific choice of values they 
assign to the set of possible 3-tuples (representing the set of possible tuples 
(x~_ 1, x~, x~+ 1).) These deterministic structures are directly tied to the one- 
to-one, versus many-to-one, nature of the rule restricted to the subsets 
{(x, y, 0), (x, y, 1)} and {(0, x, y), (1, x, y)} defined for all x, yE {0, 1}. 
The subsets can be regarded as the subset of 3-tuples into which a given 
pair (x, y) can be shift transformed. 

The analysis of deterministic structures and shift transformations 
makes possible the derivation of results describing certain global properties 
of cellular automata. These results are consistent with intuitive notions of 
differences between one-to-one and many-to-one mappings. In particular, it 
has been shown that the generations of either a homogeneous state or con- 
stant temporal sequences require that the underlying automaton rule be, at 
least in part, two-to-one. On the other hand, rules that are one-to-one in a 
well-defined sense generate aperiodic behavior. 

Finally, in interpreting the results presented in this paper, it is useful 
to recall Wolfram's classification scheme described in the introduction. 
Elementary cellular automata are conjectured by Wolfram to fall into Class 
1, 2, or 3; Class 4 automata have been observed only for k (number of 
possible values for each n o d e ) > 2 ,  and r (size of neighborhood)> 1. (17) 

Theorem 6 defines the class of elementary rules for which arbitrary finite 
initial conditions evolve to a homogeneous state, and thus characterizes 
rules belonging to Class 1. Theorem 7 provides necessary and sufficient 
conditions for rules to generate constant temporal sequences, a property 
that usually, but not always, coincides with the qualitative one describing 
Class 2. (Recall that a rule belonging to Class 2 generates constant tem- 
poral sequences that are "separated" and "simple.") The rules satisfying the 
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conditions of Theorem 2 generate infinitely many aperiodic sequences. Such 
rules clearly do not belong to either Class 1 or Class 2. Since the definition 
of aperiodicity overlaps, but does not coincide with, that of "chaotic" 
behavior, these rules constitute a class that presumably overlaps Class 3. 
Rule 150 is an example of a cellular automaton satisfying the conditions of 
both Theorems 2 and 6; given symmetric initial conditions, it generates one 
constant temporal sequence (in the "center"), and every other sequence is 
aperiodic. The implications of the results on the generation of constant 
temporal sequences for the use of cellular automata in pattern recognition 
are discussed in Ref. 5. 
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